“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 51
School of Mathematics
  Title:   Sum and intersection of summand ideals in C(X)
  Author(s):  F. Azarpanah
  Status:   Published
  Journal: Comm. Algebra
  No.:  11
  Vol.:  27
  Year:  1999
  Pages:   5549-5560
  Supported by:  IPM
Summand sum property (SSP) and summand intersection property (SIP) of modules are studied in [8] and [15] respectively. In this paper we give some topological characterizations of these properties in C(X). It is shown that the ring C(X) has SIP if and only if every interseciton of closed-open subsets of X has a closed interior. This characterization then shows that for a large class of topological spaces, such as locally connected spaces and extremally disconnected spaces, the ring C(X) has SIP. It is also shown that C(X) has SSP if and only if the space X has only finitely many components. Finally, using summand ideals of C(X), we will give several algebraic characterizations of some disconnected spaces.

Download TeX format
back to top
scroll left or right