“School of Physics”

Back to Papers Home
Back to Papers of School of Physics

Paper   IPM / P / 17208
School of Physics
  Title:   On the General Entangled State and Quantum Decoherence
  Author(s): 
1.  A. Rostami
2.  J. T. Firouzjaee
  Status:   Published
  Journal: Universe
  No.:  10
  Vol.:  8
  Year:  2022
  Pages:   508
  Supported by:  IPM
  Abstract:
We study the primary entanglement effect on the decoherence of reduced-density matrices of scalar fields, which interact with other fields or independent mode functions. We study the (leading) tree-level evolution of the scalar bispectrum due to a coupling between two scalar fields. We show that the primary entanglement has a significant role in the decoherence of the given quantum state. We find that the existence of such an entanglement could couple dynamical equations coming from a Schrödinger equation. We show that if one wants to see no effect of the entanglement parameter in the decohering of the quantum system, then the ground state eigenvalues of the interaction terms in the Hamiltonian cannot be independent of each other Generally, including the primary entanglement destroys the independence of the interaction terms in the ground state. We show that the imaginary part of the entanglement parameter plays an important role in the decoherence process without posing any specific restriction to the interaction terms. Our results could be generalized to every scalar quantum field theory with a well-defined quantization of its fluctuations in a given curved space-time.

Download TeX format
back to top
scroll left or right