“School of Physic”

Back to Papers Home
Back to Papers of School of Physic

Paper   IPM / Physic / 17133
School of Physics
  Title:   All optical quantum information processing via a single-step Rydberg blockade gate
  Author(s):  M.S. Khazali
  Status:   Preprint
  Year:  2023
  Supported by:  IPM
One of the critical elements in the realization of the quantum internet are deterministic two-photon gates. This CZ photonic gate also completes a set of universal gates for all-optical quantum information processing. This article discusses an approach to realize high fidelity CZ photonic gate by storing both control and target photons within an atomic ensemble using non-Rydberg electromagnetically induced transparency (EIT) followed by a fast, single-step Rydberg excitation with global lasers. The proposed scheme operates by relative intensity modulation of two lasers used in Rydberg excitation. Circumventing the conventional π-gap-π schemes, the proposed operation features continuous laser protection of the Rydberg atoms from the environment noise. The complete spatial overlap of stored photons inside the blockade radius optimizes the optical depth and simplifies the experiment. The coherent operation here is performed in the region that was dissipative in the previous Rydberg EIT schemes. Encountering the main imperfection sources, i.e. the spontaneous emission of the Rydberg and intermediate levels, population rotation errors, Doppler broadening of the transition lines, storage/retrieval efficiency, and atomic thermal motion induced decoherence, this article concludes that with realistic experimental parameters 99.7\% fidelity is achievable.

Download TeX format
back to top
scroll left or right