“School of Physics”
Back to Papers HomeBack to Papers of School of Physics
Paper IPM / P / 17108 |
|
||||||
Abstract: | |||||||
The standard cosmological model is in the midst of a stress test, thanks to the tension between supernovae-based measurements of the Hubble constant H0 and inferences of its values from Cosmic Microwave Background (CMB) anisotropies. Numerous explanations for the present-day cosmic acceleration require the presence of a new fundamental scalar field, as do Early Dark Energy (EDE) solutions to the Hubble tension. This raises the possibility that \textit{multiple} fields cooperatively contribute to the dark energy component in bursts throughout cosmic time due to distinct initial conditions and couplings. Here, this Cascading Dark Energy (CDE) scenario is illustrated through a realization that effectively reduces to a two-field model, with two epochs in which dark energy is cosmologically significant. The model is compared to measurements of the CMB, baryon acoustic oscillations, and observations of Type-Ia supernovae. It is found that this scenario ameliorates the Hubble tension, improving over purely late-time models of dark energy, and improves agreement between the related Rock `n' Roll EDE scenario and galaxy survey measurements of baryon acoustic oscillations.
Download TeX format |
|||||||
back to top |