“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 167
School of Mathematics
  Title:   On defining sets of directed designs
1.  E. S. Mahmoodian
2.  N. Soltankhah
3.  A. Penfold Street
  Status:   Published
  Journal: Australas. J. Combin.
  Vol.:  19
  Year:  1999
  Pages:   179-190
  Supported by:  IPM
The concept of defining set has been studied in block designs and, under the name critical sets, in Latin squares and Room squares. Here we study defining sets for directed designs. A t-(v,k,λ) directed design (DD) is a pair (V,B), where V is a v-set and B is a collection of ordered blocks (or k-tuples of V), for which each t-tuple of V appears in precisely λ blocks. A set of blocks which is a subset of a unique t-(v,k,λ) DD is said to be a defining set of the directed design.
As in the case of block designs, finding defining sets seems to be a difficult problem. In this note we introduce some lower bounds for the number of blocks in smallest defining sets in directed designs, determine the precise number of blocks in smallest defining sets for some directed designs with small parameters and point out an open problem relating to the number of blocks needed to define a directed design as compared with the number needed to define its underlying undirected design.

Download TeX format
back to top
scroll left or right