“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 15938
School of Mathematics
  Title:   The category of ordered Bratteli diagrams
1.  Massoud Amini
2.  Nasser Golestani (Joint with G. A. Elliott)
  Status:   Published
  Journal: Canad. J. Math
  Year:  2019
  Pages:   DOI: 10.4153/S0008414X19000452
  Supported by:  IPM
A category structure for ordered Bratteli diagrams is proposed in which isomorphism coincides with the notion of equivalence of Herman, Putnam, and Skau. It is shown that the natural one-to-one correspondence between the category of Cantor minimal systems and the category of simple properly ordered Bratteli diagrams is in fact an equivalence of categories. This gives a Bratteli-Vershik model for factor maps between Cantor minimal systems. We give a construction of factor maps between Cantor minimal systems in terms of suitable maps (called premorphisms) between the corresponding ordered Bratteli diagrams, and we show that every factor map between two Cantor minimal systems is obtained in this way. Moreover, solving a natural question, we are able to characterize Glasner and Weiss's notion of weak orbit equivalence of Cantor minimal systems in terms of the corresponding C*-algebra crossed products.

Download TeX format
back to top
scroll left or right