“School of Biological”

Back to Papers Home
Back to Papers of School of Biological

Paper   IPM / Biological / 15861
School of Biological Sciences
  Title:   Significant Random Signatures Reveals New Biomarker for Breast Cancer
  Author(s): 
1.  Elnaz Saberi Ansari
2.  Changiz Eslahchi
3.  Mahsa Rahimi
4.  Lobat Geranpayeh
5.  Marzieh Ebrahimi
6.  Rosa Aghdam
7.  Gwenneg Kerdivel
  Status:   Published
  Journal: BMC Medical Genomics
  No.:  160
  Vol.:  12
  Year:  2019
  Pages:   https://doi.org/10.1186/s12920-019-0609-1
  Supported by:  IPM
  Abstract:
Background: In 2012, Venet et al. proposed that at least in the case of breast cancer, most published signatures are not significantly more associated with outcome than randomly generated signatures. They suggested that nominal p-value is not a good estimator to show the significance of a signature. Therefore, one can reasonably postulate that some information might be present in such significant random signatures. Methods: In this research, first we show that, using an empirical p-value, these published signatures are more significant than their nominal p-values. In other words, the proposed empirical p-value can be considered as a complimentary criterion for nominal p-value to distinguish random signatures from significant ones. Secondly, we develop a novel computational method to extract information that are embedded within significant random signatures. In our method, a score is assigned to each gene based on the number of times it appears in significant random signatures. Then, these scores are diffused through a protein-protein interaction network and a permutation procedure is used to determine the genes with significant scores. The genes with significant scores are considered as the set of significant genes. Results: First, we applied our method on the breast cancer dataset NKI to achieve a set of significant genes in breast cancer considering significant random signatures. Secondly, prognostic performance of the computed set of significant genes is evaluated using DMFS and RFS datasets. We have observed that the top ranked genes from this set can successfully separate patients with poor prognosis from those with good prognosis. Finally, we investigated the expression pattern of TAT, the first gene reported in our set, in malignant breast cancer vs. adjacent normal tissue and mammospheres. Conclusion: Applying the method, we found a set of significant genes in breast cancer, including TAT, a gene that has never been reported as an important gene in breast cancer. Our results show that the expression of TAT is repressed in tumors suggesting that this gene could act as a tumor suppressor in breast cancer and could be used as anewbiomarker. Keywords: Random signature, Network diffusion, Biomarker, Breast cancer, TAT (Tyrosine Aminotransferase)
https://doi.org/10.1186/s12920-019-0609-1

Download TeX format
back to top
scroll left or right