“School of Physics”

Back to Papers Home
Back to Papers of School of Physics

Paper   IPM / P / 15109
School of Physics
  Title:   Systematic renormalization of the effective theory of Large Scale Structure
  Author(s): 
1.  A.A. Abolhasani
2.  M. Mirbabayi
3.  E. Pajer
  Status:   Published
  Journal: JCAP
  Vol.:  05
  Year:  2016
  Pages:   063
  Supported by:  IPM
  Abstract:
A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

Download TeX format
back to top
scroll left or right