“School of Astronomy”
Back to Papers HomeBack to Papers of School of Astronomy
Paper IPM / Astronomy / 14404 |
|
||||||
Abstract: | |||||||
We review pedagogically some of the basic essentials regarding recent results intertwining boundary conditions, the algebra of constraints and hidden symmetries in quantum cosmology. They were extensively published in Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014), S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439 and T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212], where complete discussions and full details can be found. More concretely, in Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014) and S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439] it has been shown that specific boundary conditions can be related to the algebra of Dirac observables. Moreover, a process afterwards associated to the algebra of existent hidden symmetries, from which the boundary conditions can be selected, was introduced. On the other hand, in Ref. [T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212] it was subsequently argued that some factor ordering choices can be extracted from the hidden symmetries structure of the minisuperspace model.
In Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014), S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439 and T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212], we proceeded gradually towards less simple models, ranging from a FLRW model with a perfect fluid [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541] up to a conformal scalar field content [T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212]. We envisage that we could extend this framework towards a class of shape invariant potentials, which could include well known analytically solvable cosmological cases. Provided, we identify integrability in terms of the shape invariance conditions, we could eventually consider to import features of supersymmetric quantum mechanics towards quantum cosmology [P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 1: Fundamentals, Lecture Notes in Physics, Vol. 803 (Springer-Verlag, Berlin, 2010), P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 2: Advanced Topics, Lecture Notes in Physics, Vol. 804 (Springer, New York, 2010)], which we will also discuss in this review.
Another point to emphasize is that by means of a hidden symmetry and then an algebra of Dirac observables, boundary conditions are extracted (and not ad hoc formulated) within a framework intrinsic to each model dynamics. Therefore, meeting DeWittâs conjecture [B. S. DeWitt, Phys. Rev. 160 (1967) 1113] that âthe constraints are everythingâ and nothing else but the constraints should be needed
Download TeX format |
|||||||
back to top |