“School of Physics”
Back to Papers HomeBack to Papers of School of Physics
Paper IPM / P / 13112 |
|
||||
Abstract: | |||||
Dirac electrons in clean graphene can mediate the interactions between two localized magnetic moments. The functional form of the RKKY interaction in pristine graphene is specified by two main features: (i) an atomic-scale oscillatory part determined by a wavevector →Q connecting the two valleys; with doping another longer range oscillation appears which arises from the existence of an extended Fermi surface characterized by a momentum scale kF; (ii) an algebraic Rα decay in large distances where the exponent α = �?? 3 is a distinct feature of undoped Dirac sea in two dimensions. In this work, we investigate the effect of a few per cent vacancies on the above properties. Depending on the doping level, if the chemical potential lies on the linear part of the density of states, the exponent α remains at �??3 even in vacant graphene. Otherwise α reduces towards more negative values. Presence of vacancies washes out both atomic-scale and Friedel oscillations of the RKKY interaction. The absence of atomic-scale oscillations indicates the destruction of two-valley structure of the parent graphene material. However, the absence of Friedel oscillations upon 'alloying' with vacancies indicates that a quantum ground state of heavily vacant doped graphene is not given by a unique kF momentum scale.
Download TeX format |
|||||
back to top |