“School of Physics”

Back to Papers Home
Back to Papers of School of Physics

Paper   IPM / P / 12032
School of Physics
  Title:   Influence of Important Nanoemulsions pH on Performance of Nanostructures Catalysts for H2 Production in Syngas Reactions
1.  Z. Fakhroueian
2.  Pouriya. Esmaeilzadeh
3.  N. Afroukhteh
4.  H. Varmazyar
5.  M. Ahmadirad
6.  Pouyan. Esmaeil Zadeh
7.  M. Yousefi
8.  M. Karami
9.  A. Shafiekhani
10.  S. Sepehriseresht
  Status:   Published
  Journal: Defect and Diffusion Forum
  Vol.:  312-315
  Year:  2011
  Pages:   20-26
  Supported by:  IPM
The synthesis of nanostructures are very various, and the most of scientists always fabricate them by the coprecipitation method at pH = 10.5-11. If we prepare these nanocatalysts for partial oxidation of methane (POM), processes to transforme methane gas into hydrogen or synthesis gas (H2 + CO) for obtaining exact green fuel H2 gas at different pH, what will be occurring?, and what is the influence of pH on nanoemulsion, nanofluids, nanostructures, and finally the application in syngas process? In this study we prepared many different nanoparticles containing AlCeO2, SiO2, SiAl2O3, SiMgO, SiO2Al-MCM-41 nano mixed oxides sized (1-2 nm) at various pH (7, 8, 9, 11) by new coprecipitation and combine with nanofluids method using different direct agent surfactant, stabilizer, binder, alcohol solvent, dispersant and variable chemical pH controllers. The prepared nanostructures were characterized by common techniques such as SEM, TEM, XRD, Raman, FTIR, BET and TPR analysis at various pH. Also many marvellous and new mixture of nanotubes-nanoclay and nanotubes-nanocomposites with high methane conversion were fabricated by CuOx and NiOx sputtering test followed coprecipitation method at pH 9, for POM reactions used in petrochemical industry for the first time.

Download TeX format
back to top
scroll left or right