“School of Computer Science”
Back to Papers HomeBack to Papers of School of Computer Science
Paper IPM / Computer Science / 10984 |
|
||||||||
Abstract: | |||||||||
This paper proposes an efficient parallel algorithm for computing Lagrange interpolation on k-ary n-cube networks. This is done using the fact that a k-ary n-cube can be decomposed into n link-disjoint Hamiltonian cycles. Using these n link-disjoint cycles, we interpolate Lagrange polynomial using full bandwidth of the employed network. Communication in the main phase of the algorithm is based on an all-to-all broadcast algorithm on the n link-disjoint Hamiltonian cycles exploiting all network channels, and thus, resulting in high-efficiency in using network resources. A performance evaluation of the proposed algorithm reveals an optimum speedup for a typical range of system parameters used in current state-of-the-art implementations.
Download TeX format |
|||||||||
back to top |