“Papers of School of Cognitive Sciences”

 

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

  61. M. Fattahi , S. Modaberi, K. Eskandari and A. Haghparast,
A systematic review of the local field potential adaptations during conditioned place preference task in preclinical studies,
Synapse (2023), 77  [abstract]

DOI: https://doi.org/10.1002/syn.22277

   62. S. Eskandari, A. Rezayof, S. Asghari and S. Hashemizadeh ,
Neurobiochemical characteristics of arginine-rich peptides explain their potential therapeutic efficacy in neurodegenerative diseases,
Neuropeptides 101(2023),   [abstract]
DOI: https://doi.org/10.1016/j.npep.2023.102356

   63. M. Parsa, H. Yousefi Rad, H. Vaezi, G. Hossein-Zadeh, S. Setarehdan, R. Rostami , H. Rostami and A. Vahabie,
EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions,
Computer Methods and Programs in Biomedicine 240(2023),   [abstract]
DOI: https://doi.org/10.1016/j.cmpb.2023.107683

   64. J. Lee, M. Beirami, R. Ebrahimpour, C. Puyana, M. Tsoukas and K. Avanaki,
Optical coherence tomography confirms non-malignant pigmented lesions in phacomatosis pigmentokeratotica using a support vector machine learning algorithm,
Skin Res Technol 29(2023),   [abstract]
DOI: https://doi.org/10.1111/srt.13377

   65. S. Mazaheri, M. Zendehdel and A. Haghparast,
Restraint stress potentiates sensitivity to the antinociceptive effect of morphine through orexin receptors in the ventral tegmental area,
Neuropeptides 101(2023),   [abstract]
DOI: https://doi.org/10.1016/j.npep.2023.102353

   66. M. Mohammadi, K. Eskandari, R. Azizbeigi and A. Haghparast,
The inhibitory effect of cannabidiol on the rewarding properties of methamphetamine in part mediates by interacting with the hippocampal D1-like dopamine receptors,
Prog Neuropsychopharmacol Biol Psychiatry 126(2023),   [abstract]
DOI: https://doi.org/10.1016/j.pnpbp.2023.110778

   67. P. Navidi, S. Saeedpour , S. Ershadmanesh , M. Miandari Hossein and B. Bahrami ,
Prosocial learning: Model-based or model-free?,
Plos One 18(2023),   [abstract]
DOI: https://doi.org/10.1371/journal.pone.0287563

   68. S. Jamali, M. Aliyari Shoorehdeli, M. Daliri and A. Haghparast,
Differential Aspects of Natural and Morphine Reward-related Behaviors in Conditioned Place Preference Paradigm,
Basic and Clinical Neuroscience (2023),   [abstract]
DOI: https://doi.org/10.32598/bcn.2021.3071.1

   69. M. Mokari-Mahallati, R. Ebrahimpour, N. Bagheri and H. Karimi-Rouzbahani,
Deeper neural network models better reflect how humans cope with contrast variation in object recognition,
Neuroscience Research 192(2023),   [abstract]
DOI: https://doi.org/10.1016/j.neures.2023.01.007

   70. F. Keyvanfard, A. Rahimi Nasab and A. Nasiraei-Moghaddam,
Brain subnetworks most sensitive to alterations of functional connectivity in Schizophrenia: a data-driven approach,
Front Neuroinform 17(2023),   [abstract]
DOI: https://doi.org/10.3389/fninf.2023.1175886

   back to top  

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

scroll left or right