“Papers of School of Cognitive Sciences”
Pages:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Neurobiochemical characteristics of arginine-rich peptides explain their potential therapeutic efficacy in neurodegenerative diseases,
Neuropeptides 101(2023), [abstract]
122. M. Parsa, H. Yousefi Rad, H. Vaezi, G. Hossein-Zadeh, S. Setarehdan, R. Rostami , H. Rostami and A-H. Vahabie,
EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions,
Computer Methods and Programs in Biomedicine 240(2023), [abstract]
123. J. Lee, M. Beirami, R. Ebrahimpour, C. Puyana, M. Tsoukas and K. Avanaki,
Optical coherence tomography confirms non-malignant pigmented lesions in phacomatosis pigmentokeratotica using a support vector machine learning algorithm,
Skin Res Technol 29(2023), [abstract]
124. S. Mazaheri, M. Zendehdel and A. Haghparast,
Restraint stress potentiates sensitivity to the antinociceptive effect of morphine through orexin receptors in the ventral tegmental area,
Neuropeptides 101(2023), [abstract]
125. M. Mohammadi, K. Eskandari, R. Azizbeigi and A. Haghparast,
The inhibitory effect of cannabidiol on the rewarding properties of methamphetamine in part mediates by interacting with the hippocampal D1-like dopamine receptors,
Prog Neuropsychopharmacol Biol Psychiatry 126(2023), [abstract]
126. P. Navidi, S. Saeedpour , S. Ershadmanesh , M. Miandari Hossein and B. Bahrami ,
Prosocial learning: Model-based or model-free?,
Plos One 18(2023), e0287563 [abstract]
127. S. Jamali, M. Aliyari Shoorehdeli, M. Daliri and A. Haghparast,
Differential Aspects of Natural and Morphine Reward-related Behaviors in Conditioned Place Preference Paradigm,
Basic and Clinical Neuroscience (2023), [abstract]
128. M. Mokari-Mahallati, R. Ebrahimpour, N. Bagheri and H. Karimi-Rouzbahani,
Deeper neural network models better reflect how humans cope with contrast variation in object recognition,
Neuroscience Research 192(2023), [abstract]
129. F. Keyvanfard, A. Rahimi Nasab and A. Nasiraei-Moghaddam,
Brain subnetworks most sensitive to alterations of functional connectivity in Schizophrenia: a data-driven approach,
Front Neuroinform 17(2023), [abstract]
130. S. Karimi-Haghighi, M. Mahmoudi , F. Sayehmiri, R. Mozafari and A. Haghparast,
Endocannabinoid system as a therapeutic target for psychostimulants relapse: A systematic review of preclinical studies,
European Journal of Pharmacology 951(2023), [abstract]
back to top
Pages:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71