“Rosa Aghdam”
Email:
IPM Positions |
||
Long Term Visitor, School of Biological Sciences
(2023 - Present ) |
||
Related Papers |
1. | P. Niloofar, R. Aghdam and C. Eslahchi GAEM: Genetic Algorithm based Expectation-Maximization for inferring Gene Regulatory Networks from incomplete data Computers in Biology and Medicine 183 (2024), [abstract] |
2. | A. Darabi, S. Sobhani, R. Aghdam and C. Eslahchi AFITbin: a metagenomic contig binning method using aggregate l-mer frequency based on initial and terminal nucleotides BMC Bioinformatics (2024), [abstract] |
3. | N. Babaiha, R. Aghdam, S. Ghiam and C. Eslahchi NN-RNALoc: Neural network-based model for prediction of mRNA sub-cellular localization using distance-based sub-sequence profiles PLOS ONE (2023), [abstract] |
4. | M. Maghsoudi, R. Aghdam and C. Eslahchi Removing the association of random gene sets and survival time in cancers with positive random bias using fixed-point gene set Scientific Reports (2023), [abstract] |
5. | S.A.. Malekpour, M. Shahdoust, R. Aghdam and M. Sadeghi wpLogicNet: logic gate and structure inference in gene regulatory networks Bioinformatics (2023), [abstract] |
6. | R. Masumshah, R. Aghdam and C. Eslahchi A neural networkâbased method for polypharmacy side efects prediction BMC Bioinformatics 22 (2021), [abstract] |
7. | M. Habibi, G. Taheri and R. Aghdam A SARS-CoV-2 (COVID-19) biological network to find targets for drug repurposing Scientific Reports 11 (2021), 1-15 [abstract] |
8. | S. H. Mahmoodi, R. Aghdam and C. Eslahchi An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests Scientific Reports 11 (2021), 1-15 [abstract] |
9. | E. Saberi Ansari, Ch. Eslahchi, M. Rahimi, L. Geranpayeh, M. Ebrahimi, R. Aghdam and G. Kerdivel Significant Random Signatures Reveals New Biomarker for Breast Cancer BMC Medical Genomics 12 (2019), https://doi.org/10.1186/s12920-019-0609-1 [abstract] |
10. | R. Aghdam, V. Rezaei Tabar and H. Pezeshk Some Node Ordering Methods for the K2 Algorithm Computational Intelligence DOI: 10.1111/coin.12182 (2018), 1-17 [abstract] |
11. | R. Aghdam, T. Baghfalaki, P. Khosravi and E. Saberi Ansari The Ability of Different Imputation Methods to Preserve the Significant Genes and Pathways in Cancer Genomics, proteomics & bioinformatics 15 (2017), 396-404 [abstract] |
12. | R. Aghdam, P. Khosravi and E. Saberi Ansari Comparative Analysis of Gene Regulatory Networks Concepts in Normal and Cancer Groups Bioinformatics and Biocomputational Research (2016), 1 [abstract] |
13. | R. Aghdam. , M. Alijanpour. , M. Azadi. , A. Ebrahimi. , C. Eslahchi. and A. Rezvan. Inferring Gene Regulatory Networks by PCA-CMI Using Hill Climbing Algorithm Based on MIT Score and SORDER Method Int. J. Biomath. DOI: 10.1142/S1793524516500406 (2016), 18 [abstract] |
14. | R. Aghdam, M. Ganjali. , P. Niloofar. and C. Eslahchi. Inferring gene regulatory networks by an order independent algorithm using incomplete data sets J. Appl. Statist. DOI:10.1080/02664763.2015.1079307 (2016), 1-21 [abstract] |
15. | M. Habibi. , P. Khoda bakhshi. and R. Aghdam. LRC: A new algorithm for prediction of conformational B-cell epitopes using statistical approach and clustering method Journal of immunological methods doi:10.1016/j.jim.2015.09.006 (2015), [abstract] |
16. | R. Aghdam. , M. Ganjali. , X. Zhang. and C. Eslahchi. CN: A Consensus Algorithm for Inferring Gene Regulatory Networks Using SORDER Algorithm and Conditional Mutual Information Test Molecular BioSystems DOI: 10.1039/C4MB00413B (2015), 942-949 [abstract] |
17. | R. Aghdam. , M. Ganjali. and C. Eslahchi. A Hybrid Algorithm for Inferring Gene Regulatory Networks Iranian Statistical Conference( In: ) [abstract] |
18. | R. Aghdam. , M. Alijanpour. , M. Azadi. , A. Ebrahimi. and C. Eslahchi. Applying a Hybrid Method based on PC algorithm-based approach and MIT Score to Infer Gene Regulatory Networks Iranian Conference on Bioinformatics (Accepted) [abstract] |
19. | R. Aghdam. , M. Ganjali. and C. Eslahchi. IPCA-CMI: An algorithm for Inferring Gene Regulatory Networks Based on a Combination of PCA-CMI and MIT Score Plos One 9 (2014), e92600 [abstract] |
20. | R. Aghdam. , H. Pezeshk. and M. Ganjali. A New Method for Estimating parameters of A Profile Hidden Markov models Based on Phylogenetic tree Iranian Statistical Conference (2012), [abstract] |
21. | R. Aghdam. , H. Pezeshk. , S.A. Malekpour. , S. Shemehsavar. , M. Sadeghi. and C. Eslahchi. A Clustering Approach for Estimating Parameters of a Profle Hidden Markov Model International Journal of Data Mining and Bioinformatics 8 (2012), 66-82 [abstract] |
22. | A. Ebrahimi. , R. Aghdam. , N. Parisa. , M. ganjali. and C. Eslahchi. An Algorithm for Inference of Gene Networks UsingBayesian Network Emerging Trends in Computing and information Science 5 (2012), 774-782 [abstract] |
23. | R. Aghdam. , H. Pezeshk. , S.A. Malekpour. , S. Shemehsavar. , M. Sadeghi. and C. Eslahchi. A Bidirectional Bayesian Monte Carlo Approach For Estimating Parameters Of A Profile Hidden Markov Model Applied Science Segment 1 (2010), [abstract] |
[Back]
|