“School of Mathematics”
Back to Papers HomeBack to Papers of School of Mathematics
Paper IPM / M / 8549 |
|
Abstract: | |
Let \fraka be an ideal of a d-dimensional Gorenstein ring
R and let M be an R-module of finite projective dimension.
In this paper, among the other things, we show that, for every
R-module N, the Gorenstein injective dimension of generalized
local cohomology module H\frakad(M, N) is less than or
equal to the projective dimension M. This implies that, for
every R-module N, the top ordinary local cohomology module
H\frakad(N) is Gorenstein injective. Also, we obtain some
vanishing results for generalized local cohomology modules.
Download TeX format |
|
back to top |