“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 2353
School of Mathematics
  Title:   Critical sets in the elementary abelian 2- and 3- groups
  Author(s):  R. Bean
  Status:   Published
  Journal: Util. Math.
  Vol.:  68
  Year:  2005
  Pages:   53-61
  Supported by:  IPM
  Abstract:
In 1998, Khodkar showed that the minimal critical set in the Latin square corresponding to the elementary abelian 2-group of order 16 is of size at most 124. Since the paper was published, improved methods for solving integer programming problems have been developed. Here we give an example of a critical set of size 121 in this Latin square, found through such methods. We also give a new upper bound on the size of critical sets of minimal size for the elementary abelian 2-group of order 2n: 4n − 3n + 4 −2n − 2n−2. We speculate about possible lower bounds for this value, given some other results for the elementary abelian 2-group of orders 32 and 64. An example of a critical set of size 29 in the Latin square corresponding to the elementary abelian 3-group of order 9 is given, and it is shown that any such critical set must be of size at least 24, improving the bound of 21 given by Donovan, Cooper, Nott and Seberry.

Download TeX format
back to top
scroll left or right