“School of Mathematics”
Back to Papers HomeBack to Papers of School of Mathematics
Paper IPM / M / 139 |
|
||||||
Abstract: | |||||||
The first part of the paper is concerned, among other things, with a characterization of filter regular sequences in terms of modules of generalized fractions. This characterization leads to a description, in terms of generalized fractions, of the structure of an arbitrary local cohomology
module of a finitely generated module over a notherian ring. In the second part of the paper, we establish homomorphisms between the homology modules of a Koszul complex and the homology modules of a certain complex of modules of generalized fractions. Using these homomorphisms, we obtain a characterization of unconditioned strong d-sequences.
Download TeX format |
|||||||
back to top |