“School of Cognitive Sciences”
Back to Papers HomeBack to Papers of School of Cognitive Sciences
Paper IPM / Cognitive Sciences / 12794 |
|
||||
Abstract: | |||||
In the current study, we present a new approach for decoding brain states based on the connectivity graphs extracted from functional magnetic resonance imaging (fMRI) data. fMRI connectivity graphs are constructed in different brain states and fed into an iterative support vector classifier that is enriched by shortest-path kernel. The classifier prunes the graphs of insignificant edges via a backward edge elimination procedure. The iteration in which maximum classification performance occurs is considered as optimum iteration. The edges and nodes that survive in the optimum iteration form discriminant networks between states. We apply âone-versus-oneâ approach to extend the proposed method into a multi-class classifier. This classifier is used to distinguish between five cognitive brain states from a blocked design fMRI data: (1) fixation, (2) detection of a single stimulus, (3) perceptual matching, (4) attentional cueing, and (5) delayed match-to-sample. The proposed method results in multi-class classification accuracy of 86.32
Download TeX format |
|||||
back to top |