\documentclass[12pt]{article}
\usepackage{amsmath,amssymb,amsfonts}
\begin{document}
In this study, the scenario of a two-component warm tachyon inflation is considered, where the tachyon field plays the role of the inflaton by driving the inflation. During inflation, the tachyon scalar field interacts with the other component of the Universe, which is assumed to be photon gas, i.e., radiation. The interacting term contains a dissipation coefficient, and the study is modeled based on two different and familiar choices of the coefficient that were studied in the literature. By employing the latest observational data, the acceptable ranges for the free parameters of the model are obtained. For any choice within the estimated ranges, there is an acceptable concordance between the theoretical predictions and observations. Although the model is established based on several assumptions, it is crucial to verify their validity for the obtained values of the free parameters of the model. It is found that the model is not self-consistent for all values of the ranges, and for some cases, the assumptions are violated. Therefore, to achieve both self-consistency and agreement with the data, the parameters of the model must be constrained. Subsequently, we consider the recently proposed swampland conjecture, which imposes two conditions on the inflationary models. These criteria rule out some inflationary models; however, warm inflation is among those that successfully satisfy the swampland criteria. We conduct a precise investigation, which indicates that the proposed warm tachyon inflation cannot satisfy the swampland criteria for some cases. In fact, for the first case of the dissipation coefficient, in which, there is dependency only on the scalar field, the model agrees with observational data. However, it is in direct tension with the swampland criteria. Nevertheless, for the second case, wherein the dissipation coefficient has a dependency on both the scalar field and temperature, the model exhibits acceptable agreement with observational data, and suitably satisfies the swampland criteria
\end{document}