\documentclass[12pt]{article}
\usepackage{amsmath,amssymb,amsfonts}
\begin{document}
We study the primary entanglement effect on the decoherence of fields reduced density matrix which are in interaction with another fields or independent mode functions. We show that the primary entanglement has a significant role in decoherence of the system quantum state. We find that the existence of entanglement could couple dynamical equations coming from SchrÃ‚Â¨odinger equation. We show if one wants to see no effect of the entanglement parameter in decoherence then interaction terms in Hamiltonian can not be independent from each other. Generally, including the primary entanglement destroys the independence of the interaction terms. Our results could be generalized to every scalar quantum field theory with a well defined quantization in a given curved space time.
\end{document}