\documentclass[12pt]{article}
\usepackage{amsmath,amssymb,amsfonts}
\begin{document}
With large amounts of experimental data, modern molecular biology needs appropriate methods to deal with biological sequences. In this work, we apply a statistical method (Pearson's chi-square test) to recognize the signals appear in the whole genome of the Escherichia coli. To show the effectiveness of the method, we compare the Pearson's chi-square test with linguistic complexity on the complete genome of E. coli. The results suggest that Pearson's chi-square test is an efficient method for distinguishing genes (coding regions) form pseudogenes (noncoding regions). On the other hand, the performance of the linguistic complexity is much lower than the chi-square test method. We also use the Pearson's chi-square test method to determine which parts of the Open Reading Frame (ORF) have significant effect on discriminating genes form pseudogenes. Moreover, different complexity measures and Pearson's chi-square test applied on the genes with high value of Pearson's chi-square statistic. We also compute the measures on homologous of these genes. The results illustrate that there is a region near the start codon with high value of chi-square statistic and low complexity that is conserve between homologous genes.
\end{document}