40% of a conjecture of Füredi

Shahriar Shahriari
Pomona College

June 19, 2002

In this talk, I will report on joint work with Timothy Hsu, Mark Logan, and Christopher Towse on a fifteen year old conjecture of Füredi on chain partitions of a Boolean lattice.

Consider all 8 subsets of $\{1,2,3\}$ and organize them into the following "chains":

$$
\begin{aligned}
& \emptyset \subseteq\{1\} \\
& \subseteq\{1,2\} \subseteq\{1,2,3\} \\
&\{2\} \subseteq\{2,3\} \\
&\{3\} \subseteq\{1,3\}
\end{aligned}
$$

You have now partitioned these subsets into chains with sizes $4,2 \& 2$. But could you partition the 1024 subsets of $\{1, \ldots, 10\}$ into 16 chains of size 5 and 236 chains of size 4 ?

Let $[n]=\{1, \ldots, n\}$ and let $\mathbf{2}^{[n]}$ denote the poset of subsets of $[n]$ ordered by inclusion. A collection of subsets $A_{0} \subset \ldots \subset A_{k}$ of $[n]$ is called a chain of size $k+1$ in $\mathbf{2}^{[n]}$. In this talk we discuss a construction that partitions $\mathbf{2}^{[n]}$ into a collection of chains such that the size of the shortest chain is approximately $\frac{1}{2} \sqrt{n}$ and the size of the longest chain is roughly $\sqrt{n \log n}$.

This result is motivated by conjectures of Griggs and Füredi on chain partitions of $\boldsymbol{2}^{[n]}$. Let $\mu=\left(\mu_{1} \geq \ldots \geq \mu_{\ell}\right)$ be a partition of 2^{n} into positive parts. In 1988, Griggs made a conjecture that gives a necessary and sufficient condition for the existence of a partition of $\mathbf{2}^{[n]}$ into chains of sizes $\mu_{1}, \ldots, \mu_{\ell}$. Earlier, Füredi had considered a special case of the Griggs conjecture and asked if $\boldsymbol{2}^{[n]}$ can be partitioned into $\binom{n}{\lfloor n / 2\rfloor}$ chains such that the size of every chain is one of two consecutive integers. In such a (hypothetical) construction, the size of the shortest chain will be approximately $\sqrt{\pi / 2} \sqrt{n}$. In contrast, our construction gives a chain partition with the correct number of chains, and with minimal chain size roughly $\frac{1}{2} \sqrt{n}$.

